71 research outputs found

    The Potential and Challenges of Nanopore Sequencing

    Get PDF
    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic

    Hydrothermal Conditions and the Origin of Cellular Life

    No full text

    Characterization of Nucleic Acids by Nanopore Analysis

    No full text
    Single-stranded DNA and RNA molecules in solution can be driven through a nanoscopic pore by an applied electric field. As each molecule occupies the pore, a characteristic blockade of ionic current is produced. Information about length, composition, structure, and dynamic motion of the molecule can be deduced from modulations of the current blockade.Molecular and Cellular Biolog
    • …
    corecore